Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Radiat Environ Biophys ; 62(4): 483-495, 2023 11.
Article in English | MEDLINE | ID: mdl-37831188

ABSTRACT

A major challenge in modelling the decorporation of actinides (An), such as americium (Am), with DTPA (diethylenetriaminepentaacetic acid) is the fact that standard biokinetic models become inadequate for assessing radionuclide intake and estimating the resulting dose, as DTPA perturbs the regular biokinetics of the radionuclide. At present, most attempts existing in the literature are empirical and developed mainly for the interpretation of one or a limited number of specific incorporation cases. Recently, several approaches have been presented with the aim of developing a generic model, one of which reported the unperturbed biokinetics of plutonium (Pu), the chelation process and the behaviour of the chelated compound An-DTPA with a single model structure. The aim of the approach described in this present work is the development of a generic model that is able to describe the biokinetics of Am, DTPA and the chelate Am-DTPA simultaneously. Since accidental intakes in humans present many unknowns and large uncertainties, data from controlled studies in animals were used. In these studies, different amounts of DTPA were administered at different times after contamination with known quantities of Am. To account for the enhancement of faecal excretion and reduction in liver retention, DTPA is assumed to chelate Am not only in extracellular fluids, but also in hepatocytes. A good agreement was found between the predictions of the proposed model and the experimental results for urinary and faecal excretion and accumulation and retention in the liver. However, the decorporation from the skeletal compartment could not be reproduced satisfactorily under these simple assumptions.


Subject(s)
Pentetic Acid , Plutonium , Humans , Rats , Animals , Pentetic Acid/therapeutic use , Americium , Models, Biological , Chelating Agents/therapeutic use
2.
Int J Radiat Biol ; 90(11): 1062-7, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24844369

ABSTRACT

PURPOSE: To develop a physiologically based compartmental approach for modeling plutonium decorporation therapy with the chelating agent Diethylenetriaminepentaacetic acid (Ca-DTPA/Zn-DTPA). MATERIALS AND METHODS: Model calculations were performed using the software package SAAM II (©The Epsilon Group, Charlottesville, Virginia, USA). The Luciani/Polig compartmental model with age-dependent description of the bone recycling processes was used for the biokinetics of plutonium. RESULTS: The Luciani/Polig model was slightly modified in order to account for the speciation of plutonium in blood and for the different affinities for DTPA of the present chemical species. The introduction of two separate blood compartments, describing low-molecular-weight complexes of plutonium (Pu-LW) and transferrin-bound plutonium (Pu-Tf), respectively, and one additional compartment describing plutonium in the interstitial fluids was performed successfully. CONCLUSIONS: The next step of the work is the modeling of the chelation process, coupling the physiologically modified structure with the biokinetic model for DTPA. RESULTS of animal studies performed under controlled conditions will enable to better understand the principles of the involved mechanisms.


Subject(s)
Chelation Therapy/methods , Pentetic Acid/chemistry , Plutonium/chemistry , Algorithms , Animals , Bone and Bones/radiation effects , Chelating Agents/chemistry , Chelating Agents/therapeutic use , Humans , Kidney/radiation effects , Liver/radiation effects , Plutonium/adverse effects , Plutonium/pharmacokinetics , Rats , Software , Transferrin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...